\begin{tabbing} $\forall$\=$E$:Type, ${\it dE}$:EqDecider($E$), ${\it dL}$:EqDecider(IdLnk), $V$:(Knd$\rightarrow$Id$\rightarrow$Type), ${\it pred?}$:($E$$\rightarrow$(?$E$)),\+ \\[0ex]${\it info}$:($E$$\rightarrow$((:Id $\times$ Id) + (:(:IdLnk $\times$ $E$) $\times$ Id))), ${\it val}$:($e$:$E$$\rightarrow$$V$(kind($e$),loc($e$))), \\[0ex]$p$:(\=$\forall$$e$:$E$, $l$:IdLnk.\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex]($\forall$${\it e''}$:$E$. \\[0ex]($\uparrow$rcv?(${\it e''}$)) \\[0ex]$\Rightarrow$ (sender(${\it e''}$) = $e$) \\[0ex]$\Rightarrow$ (link(${\it e''}$) = $l$) \\[0ex]$\Rightarrow$ (((${\it e''}$ = ${\it e'}$) $\vee$ ${\it e''}$ $<$ ${\it e'}$) $\wedge$ (loc(${\it e'}$) = destination($l$) $\in$ Id)))), \-\-\\[0ex]$e$:$E$, $l$:IdLnk. \-\\[0ex]SWellFounded(($\neg$($\uparrow$first($y$))) c$\wedge$ ($x$ = pred($y$) $\in$ $E$)) \\[0ex]$\Rightarrow$ (\=sends(${\it dE}$; ${\it dL}$; ${\it pred?}$; ${\it info}$; ${\it val}$; $p$; $e$; $l$)\+ \\[0ex]$\in$ (Msg\_sub($l$; ($\lambda$$l$,${\it tg}$. $V$(rcv($l$,${\it tg}$),destination($l$)))) List)) \- \end{tabbing}